Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 10 de 10
Filtre
1.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.09.22.22280247

Résumé

Background: We investigated whether abatacept, a selective costimulation modulator, provides additional benefit when added to standard-of-care for patients hospitalized with Covid-19. Methods: We conducted a master protocol to investigate immunomodulators for potential benefit treating patients hospitalized with Covid-19 and report results for abatacept. Intravenous abatacept (one-time dose 10 mg/kg, maximum dose 1000 mg) plus standard of care (SOC) was compared with shared placebo plus SOC. Primary outcome was time-to-recovery by day 28. Key secondary endpoints included 28-day mortality. Results: Between October 16, 2020 and December 31, 2021, a total of 1019 participants received study treatment (509 abatacept; 510 shared placebo), constituting the modified intention-to-treat cohort. Participants had a mean age 54.8 (SD 14.6) years, 60.5% were male, 44.2% Hispanic/Latino and 13.7% Black. No statistically significant difference for the primary endpoint of time-to-recovery was found with a recovery-rate-ratio of 1.14 (95% CI 1.00-1.29; p=0.057) compared with placebo. We observed a substantial improvement in 28-day all-cause mortality with abatacept versus placebo (11.0% vs. 15.1%; odds ratio [OR] 0.62 [95% CI 0.41-0.94]), leading to 38% lower odds of dying. Improvement in mortality occurred for participants requiring oxygen/noninvasive ventilation at randomization. Subgroup analysis identified the strongest effect in those with baseline C-reactive protein >75mg/L. We found no statistically significant differences in adverse events, with safety composite index slightly favoring abatacept. Rates of secondary infections were similar (16.1% for abatacept; 14.3% for placebo). Conclusions: Addition of single-dose intravenous abatacept to standard-of-care demonstrated no statistically significant change in time-to-recovery, but improved 28-day mortality. Trial registration: ClinicalTrials.gov (NCT04593940).


Sujets)
COVID-19
2.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.09.22.22280245

Résumé

BackgroundImmune dysregulation contributes to poorer outcomes in severe Covid-19. Immunomodulators targeting various pathways have improved outcomes. We investigated whether infliximab provides benefit over standard of care. MethodsWe conducted a master protocol investigating immunomodulators for potential benefit in treatment of participants hospitalized with Covid-19 pneumonia. We report results for infliximab (single dose infusion) versus shared placebo both with standard of care. Primary outcome was time to recovery by day 29 (28 days after randomization). Key secondary endpoints included 14-day clinical status and 28-day mortality. ResultsA total of 1033 participants received study drug (517 infliximab, 516 placebo). Mean age was 54.8 years, 60.3% were male, 48.6% Hispanic or Latino, and 14% Black. No statistically significant difference in the primary endpoint was seen with infliximab compared with placebo (recovery rate ratio 1.13, 95% CI 0.99-1.29; p=0.063). Median (IQR) time to recovery was 8 days (7, 9) for infliximab and 9 days (8, 10) for placebo. Participants assigned to infliximab were more likely to have an improved clinical status at day 14 (OR 1.32, 95% CI 1.05-1.66). Twenty-eight-day mortality was 10.1% with infliximab versus 14.5% with placebo, with 41% lower odds of dying in those receiving infliximab (OR 0.59, 95% CI 0.39-0.90). No differences in risk of serious adverse events including secondary infections. ConclusionsInfliximab did not demonstrate statistically significant improvement in time to recovery. It was associated with improved 14-day clinical status and substantial reduction in 28- day mortality compared with standard of care. Trial registrationClinicalTrials.gov (NCT04593940).


Sujets)
COVID-19 , Pneumopathie infectieuse
3.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.07.25.22278025

Résumé

Identification of the plasma proteomic changes of Coronavirus disease 2019 (COVID-19) is essential to understanding the pathophysiology of the disease and developing predictive models and novel therapeutics. We performed plasma deep proteomic profiling from 332 COVID-19 patients and 150 controls and pursued replication in an independent cohort (297 cases and 76 controls) to find potential biomarkers and causal proteins for three COVID-19 outcomes (infection, ventilation, and death). We identified and replicated 1,449 proteins associated with any of the three outcomes (841 for infection, 833 for ventilation, and 253 for death) that can be query on a web portal (https://covid.proteomics.wustl.edu/). Using those proteins and machine learning approached we created and validated specific prediction models for ventilation (AUC>0.91), death (AUC>0.95) and either outcome (AUC>0.80). These proteins were also enriched in specific biological processes, including immune and cytokine signaling (FDR < 3.72x10-14), Alzheimer's disease (FDR < 5.46x10-10) and coronary artery disease (FDR < 4.64x10-2). Mendelian randomization using pQTL as instrumental variants nominated BCAT2 and GOLM1 as a causal proteins for COVID-19. Causal gene network analyses identified 141 highly connected key proteins, of which 35 have known drug targets with FDA-approved compounds. Our findings provide distinctive prognostic biomarkers for two severe COVID-19 outcomes (ventilation and death), reveal their relationship to Alzheimer's disease and coronary artery disease, and identify potential therapeutic targets for COVID-19 outcomes.


Sujets)
Maladie d'Alzheimer , Maladie coronarienne , Mort , Maladie des artères coronaires , COVID-19
4.
researchsquare; 2022.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1378671.v1

Résumé

Severe COVID-19 causes profound immune perturbations, but pre-infection immune signatures contributing to severe COVID-19 remain unknown. Genome-wide association studies (GWAS) identified strong associations between severe disease and several chemokine receptors and molecules from the type I interferon pathway. Here, we define immune signatures associated with severe COVID-19 using high-dimensional flow cytometry. We measured the peripheral immune system from individuals who recovered from mild, moderate, severe or critical COVID-19 and focused only on those immune signatures returning to steady-state. Individuals that suffered from severe COVID-19 showed reduced frequencies of T cell, MAIT cell and dendritic cell (DCs) subsets and altered chemokine receptor expression on several subsets, such as reduced levels of CCR1 and CCR2 on monocyte subsets. Furthermore, we found reduced frequencies of type I interferon-producing plasmacytoid DCs and altered IFNAR2 expression on several myeloid cells in individuals recovered from severe COVID-19. Thus, these data identify potential immune mechanisms contributing to severe COVID-19.


Sujets)
COVID-19
5.
medrxiv; 2022.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2022.01.10.22269008

Résumé

Background Results: from observational studies and randomized clinical trials (RCTs) have led to the consensus that hydroxychloroquine (HCQ) and chloroquine (CQ) are not effective for COVID-19 prevention or treatment. Pooling individual participant data, including unanalyzed data from trials terminated early, enables more detailed investigation of the efficacy and safety of HCQ/CQ among subgroups of hospitalized patients. Methods We searched ClinicalTrials.gov in May and June 2020 for US-based RCTs evaluating HCQ/CQ in hospitalized COVID-19 patients in which the outcomes defined in this study were recorded or could be extrapolated. The primary outcome was a 7-point ordinal scale measured between day 28 and 35 post enrollment; comparisons used proportional odds ratios. Harmonized de-identified data were collected via a common template spreadsheet sent to each principal investigator. The data were analyzed by fitting a prespecified Bayesian ordinal regression model and standardizing the resulting predictions. Results Eight of 19 trials met eligibility criteria and agreed to participate. Patient-level data were available from 770 participants (412 HCQ/CQ vs 358 control). Baseline characteristics were similar between groups. We did not find evidence of a difference in COVID-19 ordinal scores between days 28 and 35 post-enrollment in the pooled patient population (odds ratio, 0.97; 95% credible interval, 0.76-1.24; higher favors HCQ/CQ), and found no convincing evidence of meaningful treatment effect heterogeneity among prespecified subgroups. Adverse event and serious adverse event rates were numerically higher with HCQ/CQ vs control (0.39 vs 0.29 and 0.13 vs 0.09 per patient, respectively). Conclusions The findings of this individual participant data meta-analysis reinforce those of individual RCTs that HCQ/CQ is not efficacious for treatment of COVID-19 in hospitalized patients.


Sujets)
COVID-19
6.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.09.28.21264250

Résumé

Although vaccines effectively prevent COVID-19 in healthy individuals, they appear less immunogenic in individuals with chronic inflammatory diseases (CID) and/or under chronic immunosuppression, and there is uncertainty of their activity against emerging variants of concern in this population. Here, we assessed a cohort of 74 CID patients treated as monotherapy with chronic immunosuppressive drugs for functional antibody responses in serum against historical and variant SARS-CoV-2 viruses after immunization with Pfizer mRNA BNT162b2 vaccine. Longitudinal analysis showed the greatest reductions in neutralizing antibodies and Fc effector function capacity in individuals treated with TNF- inhibitors, and this pattern appeared worse against the B.1.617.2 Delta virus. Within five months of vaccination, serum neutralizing titers of the majority of CID patients fell below the presumed threshold correlate for antibody-mediated protection. Thus, further vaccine boosting or administration of long-acting prophylaxis (e.g., monoclonal antibodies) likely will be required to prevent SARS-CoV-2 infection in this susceptible population.


Sujets)
COVID-19 , Maladie chronique
7.
medrxiv; 2021.
Preprint Dans Anglais | medRxiv | ID: ppzbmed-10.1101.2021.03.26.21254427

Résumé

ABSTRACT The COVID-19 pandemic has been accompanied by the largest mobilization of therapeutic convalescent plasma (CCP) in over a century. Initial identification of high titer units was based on dose-response data using the Ortho VITROS IgG assay. The proliferation of SARS-CoV-2 serological assays and non-uniform application has led to uncertainty about their interrelationships. The purpose of this study was to establish correlations and analogous cutoffs between commercially available serological tests (Ortho, Abbott, Roche), a spike ELISA, and a virus neutralization assay using convalescent plasma from a cohort of 79 donors from April 2020. Relationships relative to FDA-approved cutoffs under the CCP EUA were identified by linear regression and receiver operator characteristic curves. Relative to the Ortho VITROS assay, the r 2 of the Abbott, Roche, the anti-Spike ELISA and the neutralizing assay were 0.58, 0.5, 0.82, and 0.44, respectively. The best correlative index for establishing high-titer units was 3.82 S/C for the Abbott, 10.89 COI for the Roche, 1:1,202 for the anti-Spike ELISA, and 1:200 by the neutralization assay. The overall agreement using derived cutoffs compared to the CCP EUA Ortho VITROS cutoff of 9.5 was 92.4% for Abbott, 84.8% for Roche, 87.3% for the anti-S ELISA and 78.5% for the neutralization assay. Assays based on antibodies against the nucleoprotein (Roche, Abbott) and neutralizing antibody tests were positively associated with the Ortho assay, although their ability to distinguish FDA high-titer specimens was imperfect. The resulting relationships help reconcile results from the large body of serological data generated during the COVID-19 pandemic.


Sujets)
COVID-19
8.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-310773.v1

Résumé

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) messenger RNA (mRNA)-based vaccines are ~95% effective in preventing coronavirus disease 2019. However, the dynamics of antibody secreting plasmablasts (PBs) and germinal centre (GC) B cells induced by these vaccines in SARS-CoV-2 naïve and antigen-experienced humans remains unclear. Here we examined peripheral blood and/or lymph node (LN) antigen-specific B cell responses in 32 individuals who received two doses of BNT162b2, an mRNA-based vaccine encoding the full-length SARS-CoV-2 spike (S) gene. Circulating IgG- and IgA-secreting PBs targeting the S protein peaked one week after the second immunization then declined and were undetectable three weeks later. PB responses coincided with maximal levels of serum anti-S binding and neutralizing antibodies to a historical strain as well as emerging variants, especially in individuals previously infected with SARS-CoV-2, who produced the most robust serological responses. Fine needle aspirates of draining axillary LNs identified GC B cells that bind S protein in all participants sampled after primary immunization. GC responses increased after boosting and were detectable in two distinct LNs in several participants. Remarkably, high frequencies of S-binding GC B cells and PBs were maintained in draining LNs for up to seven weeks after first immunization, with a substantial fraction of the PB pool class-switched to IgA. GC B cell-derived monoclonal antibodies predominantly targeted the RBD, with fewer clones binding to the N-terminal domain or shared epitopes within the S proteins of human betacoronaviruses OC43 and HKU1. Our studies demonstrate that SARS-CoV-2 mRNA-based vaccination of humans induces a robust and persistent GC B cell response that engages pre-existing as well as new B cell clones, which enables generation of high-affinity, broad, and durable humoral immunity.


Sujets)
Infections à coronavirus , COVID-19
9.
researchsquare; 2021.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-228079.v1

Résumé

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global COVID-19 pandemic infecting more than 106 million people and causing 2.3 million deaths. The rapid deployment of antibody-based countermeasures has provided hope for curtailing disease and ending the pandemic1. However, the emergence of rapidly-spreading SARS-CoV-2 variants in the United Kingdom (B.1.1.7), South Africa (B.1.351), and elsewhere with mutations in the spike protein has raised concern for escape from neutralizing antibody responses and loss of vaccine efficacy based on preliminary data with pseudoviruses2-4. Here, using monoclonal antibodies (mAbs), animal immune sera, human convalescent sera, and human sera from recipients of the Pfizer-BioNTech (BNT162b2) mRNA vaccine, we report the impact on antibody neutralization of a panel of authentic SARS-CoV-2 variants including a B.1.1.7 isolate, a chimeric Washington strain with a South African spike gene (Wash SA-B.1.351), and isogenic recombinant variants with designed mutations or deletions at positions 69-70, 417, 484, 501, and/or 614 of the spike protein. Several highly neutralizing mAbs engaging the receptor binding domain (RBD) or N-terminal domain (NTD) lost inhibitory activity against Wash SA-B.1.351 or recombinant variants with an E484K spike mutation. Most convalescent sera and virtually all mRNA vaccine-induced immune sera tested showed markedly diminished neutralizing activity against the Wash SA-B.1.351 strain or recombinant viruses containing mutations at position 484 and 501. We also noted that cell line selection used for growth of virus stocks or neutralization assays can impact the potency of antibodies against different SARS-CoV-2 variants, which has implications for assay standardization and congruence of results across laboratories. As several antibodies binding specific regions of the RBD and NTD show loss-of-neutralization potency in vitro against emerging variants, updated mAb cocktails, targeting of highly conserved regions, enhancement of mAb potency, or adjustments to the spike sequences of vaccines may be needed to prevent loss of protection in vivo.


Sujets)
Infections à coronavirus , COVID-19
10.
researchsquare; 2020.
Preprint Dans Anglais | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-132821.v1

Résumé

Infection or vaccination induces a population of long-lived bone marrow plasma cells (BMPCs) that are a persistent and essential source of protective antibodies1–5. Whether this population is induced in patients infected with the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is unknown. Recent reports have suggested that SARS-CoV-2 convalescent patients experience a rapid decay in their antigen-specific serum antibodies, raising concerns that humoral immunity against this virus may be short-lived6–8. Here we show that in patients who experienced mild infections (n=73), serum anti-SARS-CoV-2 spike (S) antibodies indeed decline rapidly in the first 3 to 4 months after infection. However, this is followed by a more stable phase between 4- and 8-months after infection with a slower serum anti-S antibody decay rate. The level of serum antibodies correlated with the frequency of S-specific long-lived BMPCs obtained from 18 SARS-CoV-2 convalescent patients 7 to 8 months after infection. S-specific BMPCs were not detected in aspirates from 11 healthy subjects with no history of SARS-CoV-2 infection. Comparable frequencies of BMPCs specific to contemporary influenza virus antigens or tetanus and diphtheria vaccine antigens were present in aspirates in both groups. Circulating memory B cells (MBCs) directed against the S protein were detected in the SARS-CoV-2 convalescent patients but not in uninfected controls, whereas both groups had MBCs against influenza virus hemagglutinin. Overall, we show that robust antigen specific long-lived BMPCs and MBCs are induced after mild SARS-CoV-2 infection of humans.


Sujets)
Infections à coronavirus , Lymphome B , Tétanos , Infections , COVID-19
SÉLECTION CITATIONS
Détails de la recherche